電廠在線監(jiān)測變色樹脂的均勻性與反洗
變色數脂可以用來監(jiān)測陽床或陰床出水,在陽床或陰床臨近失效時及時指示失效點,是在線監(jiān)測儀表直觀和有效的補充。具有穩(wěn)定可靠、使用簡便、不污染水質的優(yōu)點。
變色陽樹脂是一種帶有指示劑的陽離子交換樹脂,出廠型為氫型,通過變色陽樹脂的水如果含有Na+、K+、Ca2+、Mg2+、Fe2+等各種陽離子時,即與樹脂攜帶的H+發(fā)生交換,樹脂層開始失效,失效層顏色明顯改變,指示水中有陽離子泄露。H+型時為墨綠色,Na+型時為玫瑰紅色,產品色差十分明顯。同時還具有良好的交換容量和物理穩(wěn)定性。
變色陽樹脂一般用在火電廠凝結水、除氧器、省煤器、主蒸汽等H+電導儀前,將水中帶入的游離氨除去,并將所有的陽離子全部轉化為H+離子,避免了Ca2+、Mg2+、Na+泄漏進入凝結水而電導儀顯示值反倒降低的現象發(fā)生。
變色陽樹脂與H+電導儀聯合使用,用于監(jiān)測凝汽器泄漏量是否超標,決定凝結水是否需要處理,監(jiān)測給水、蒸汽水質品質是否滿足標準要求。是火力發(fā)電廠化學監(jiān)督重要和為倚重的化學表計。
變色樹脂使用范圍:監(jiān)測和控制給水、凝結水和蒸汽的氫電導率,是保證水汽質量,控制火電廠水汽系統腐蝕結垢的重要手段之一。
由于水汽中氨的濃度、取樣流速經常變化,加上機組啟停等原因,難以判斷H型交換柱何時失效。H型交換柱失效初期,由于少量銨離子穿透,使氫電導率測量值偏低;當H型交換柱失效,大量銨離子透過,氫電導率測量值又偏高。因此,當交換柱失效后引起氫電導率變化時,難以及時判斷是水質惡化還是交換柱失效。目前國外采取的解決辦法是采用變色陽離子交換樹脂,失效層與未失效層顏色不同,可以在H型交換柱失效前及時進行再生處理,可以及時發(fā)現水質惡化問題并及時采取解決措施。
變色樹脂使用方法:
新購買的變色樹脂是未處理的Na型樹脂,必須經過以下方式處理才可以使用:
(1)將新樹脂放入容器中,以除鹽水清洗2~3遍,至水清澈;如果樹脂變干,則清洗前需要加入10NaCl溶液浸泡2小時,以防止樹脂因急劇膨脹而破裂。
(2)將清洗干凈的樹脂裝入實際交換柱中,以不少于10倍樹脂體積的5HCl再生液動態(tài)逆流再生(與交換柱運行水流方向相反),再生流速控制3m/h~5m/h,保證再生液與樹脂接觸時間不小于30min;
(3)再生液進完后以除鹽水按交換柱運行水流方向大流量沖洗交換柱(沖洗流速10m/h~20m/h),沖洗時間不低于12h;
(4)再生完畢、清洗干凈的氫交換柱可裝入實際系統進行氫電導率的測定。
(5)失效的變色樹脂氫型交換柱可直接進行再生處理,再生步驟同(2)~(4)。
變色樹脂的儲存:需要長期儲存的樹脂,應再生成氫型樹脂后儲存。
電廠在線監(jiān)測變色樹脂的均勻性與反洗
離子交換樹脂的清洗
離子交換樹脂自耗水少和節(jié)約再生時間。MONOSPHERE高強度均粒凝膠樹脂比傳統樹脂容易清洗,具有清洗水量小,清洗時間短,再生效率高等特點。由于這種樹脂粒度均勻,所以有著較小且均勻的擴散距離。在相同的再生和清洗情況下,這種樹脂比傳統樹脂更快地達到出水標準。MONOSPHERE高強度凝膠樹脂清洗后較容易達到清洗終點標準值。如果陽、陰樹脂各自再生、清洗,節(jié)約用水將更為明顯。在混床樹脂系統中,使用粒度均勻的樹脂予淋洗的時間可減少到原來所需時間的三分之一。
離子交換樹脂
離子交換樹脂的反洗
分層。陰陽樹脂的反洗分離程度主要是依賴于其密度差和粒徑大小。實際上,在交換柱中,每種樹脂反洗后的后位置主要是依賴于樹脂的沉降速度。
v=終沉降速率(cm/s)g=重力常數(cm/s2)a=樹脂粒徑(cm)
d1=樹脂密度(g/cm3)d2=水的密度(g/cm3)η=水的黏度(g/cm·s)
離子交換樹脂
這種沉降速度既與樹脂的密度有關又與樹脂的粒度有關。換句話說,反洗作用的結果使小密度的陰樹脂沉降在大密度的陽樹脂上,小顆粒樹脂沉降在大顆粒樹脂之上。一般說來,陽、陰樹脂之間的密度差為20,隨著樹脂顆粒粒度的變化,很容易理解粒度小的陽樹脂之所以與粒度大的陰樹脂的沉降速度交織在一起。因為傳統樹脂在反洗后粒度小的陽樹脂和粒度大的陰樹脂的交界面附近出現混層,其結果是沉降速率相同的陽樹脂和陰樹脂將要出現交叉再生,即所謂的交叉污染,降低了水處理系統的運行交換容量,交叉污染也將引起下一周期的硫酸根或鈉離子的泄露。
離子交換樹脂
由于MONOSPHERE高強度均粒凝膠樹脂的平均粒度正負相差100微米(mm)的要占95以上,所以在反洗時能分離。粒度小的陽樹脂和粒度大的陰樹脂的沉降速度有較大的差別。高強度陽樹脂的粒度一般為650mm,陰樹脂一般為550mm。由于陰樹脂的粒度比陽樹脂小,所以MONOSPHERE高強度凝膠陽樹脂同時具有顆粒粒度差和密度差,從而保證得到的分層效果。
樹脂顆粒的顏色之差也十分明顯,可看清分離效果。很顯然,檢查傳統樹脂的分離效果是不容易的,通過設備上的視鏡看到的是一層兩種樹脂間的不明顯的色帶。而對于MONOSPHERE樹脂,視鏡中可清楚地看到在深色高強度陰樹脂之上有一條明顯的色差帶,色差本身就表明樹脂顆粒粒度的均勻性,并由此可以預見其分離效果良好。